Search results

Search for "van der Waals force" in Full Text gives 26 result(s) in Beilstein Journal of Nanotechnology.

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • microvoids in the liquid. This exerted a shear force on NP agglomerates, effectively overcoming the van der Waals force that holds them together [56]. The effect of ZnO NPs on soluble protein and IAA contents Plants grown in coir medium treated with 10,000 mg/L did not survive. Therefore, protein and IAA
PDF
Album
Full Research Paper
Published 23 Jan 2024

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • the entire fiber length l, which can depend on the position along the fiber: This formulation could be interpreted in such a way that if the radius of the fiber decreases, the van der Waals force also decreases and can, therefore, be neglected if R is sufficiently small. However, this is not always
  • the case for these reasons: (1) Due to the smaller radius, the fiber also becomes softer. In consequence, the easier deflection can increase the contact area, resulting in larger forces. The van der Waals force is proportional to the root of the radius, μ ∼ √R, and the materials stiffness, expressed
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • of 520 eV was employed to expand the smooth part of the wave function. Since traditional DFT calculations at the GGA level cannot correctly include the nonlocal van der Waals interactions [39][40][41][42], the DFT‐D3 approach was applied in this study to consider the influence of the van der Waals
  • force [43][44]. Gamma-centered k-point meshes with a reciprocal space resolution of 0.04 × 2π/Å were utilized. Prior to the calculations, the lattice constants were optimized. All atoms were allowed to relax until the forces were smaller than 0.02 eV/Å. The convergence criterion for the self-consistent
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • and molecular forces play a key role in self-assembly, including hydrogen bonds, hydrophobic bonds, van der Waals force, ionic bonds, π–π stacking, and electrostatic forces [31]. Importantly, amino acids are simple building blocks that provide relevant noncovalent interactions to construct complex
  • characteristics compared to the common noncovalent interactions in self-assembly, such as hydrophobic interactions, van der Waals force, hydrogen bonds, ion attraction, and π–π stacking [57]. Cystine (Cys) can provide carboxyl and amino groups with which it can coordinate with equimolar amounts of cadmium ions
PDF
Album
Review
Published 12 Oct 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • properties in various fields, such as supercapacitors, integrated electrodes, catalysis, and sensors [10][11][12][13]. Furthermore, the interaction between graphene and matrix materials directly affects the mechanical properties of composites [14]. The van der Waals force between graphene and metals can
PDF
Album
Full Research Paper
Published 12 Aug 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • layers result in repulsion between two particles, this force is constantly opposed by the attractive van der Waals force. The balance between these interparticle forces gives the total DLVO force and highly depends on system parameters, such as the electrolyte concentration and fluid dielectric constant
  • dielectric constant, respectively. Conversely, the attractive van der Waals force is given by [14]: where the characteristic energy scale is set by the Hamaker constant, A. It is noted that Equation 1 and Equation 2 assume spherical particles of equal radius and a sufficiently small separation distance (a
  • is noted that the van der Waals force for uniform aggregation is equal to that of the initial particle configuration (i.e., F11;vdW = F12;vdW). Therefore, the magnitude of F12 compared to F11 depends only on the double layer term. Alternatively, with respect to a non-uniform aggregation of identical
PDF
Album
Full Research Paper
Published 06 May 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • interaction of single neutral molecules separated by a distance r, the van der Waals force FvdW includes three different types of dynamic dipole–dipole interactions: Keesom interaction (dipole–dipole), Debye interaction (dipole–induced dipole) and London interaction (transient dipoles). The van der Waals work
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • analysis; surface/interface effect; van der Waals force; viscous fluid velocity; Introduction Nanomechanical sensors and resonators, especially when combined with piezoelectric materials, are widely used in modern engineering, which encompasses numerous, diverse fields of science and technology
  • dimensionless natural frequency with respect to viscous fluid velocity and pull-in voltage of fluid-conveying multiwalled piezoelectric nanosensors (FC-MWPENSs) subjected to direct electrostatic DC voltage with nonlinear excitation, nonlinear van der Waals force and viscoelastic foundation. As a guide to the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • z−6 dependency that can be mathematically derived to describe long-range van der Waals force interactions [55]. However, the repulsive term in the 6-12 LJ pair potential has a z−12 dependency that is empirical and computationally simple [32][56]. While it is known that the repulsive term in the 6-12
PDF
Album
Full Research Paper
Published 06 May 2020

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • profile perpendicular to the direction (black line in Figure 2a), the height of the step was about 200 pm. The measured step height of 200 pm was smaller than real step height of 325 pm [32], which can be explained by the large tip–sample distance. Actually, at the large tip–sample distances, the van der
  • Waals force is dominant and the contribution of the force from the tip apex becomes weak and the force from the rest of the cantilever becomes significant. Therefore, the observed height of step was smaller than that of the real one. Before the experiments, we verified that the distance calibration of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • sensors based on rGO exhibited a rapid and high response to target gas at room temperature. However, these sensors show a common shortage. Since the binding force between graphene and gas molecules is van der Waals force or even covalent bonds [6], the recovery time is too long, sometimes recovery is not
PDF
Album
Review
Published 09 Nov 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • superposes on the van der Waals force between the tip and sample so that both forces contribute to the imaging. In recent years, its applications have been extended to study the local dielectric properties of semiconductor nanomaterials such as GO sheets or partially reduced rGO sheets [20][21][22], graphene
  • information (blue arrows marked in Figure 1i,k), indicating the contributions from the polarization force (dielectric properties) and the van der Waals force (topography) between the tip and sample. As we can see in the Figure 1l,m,n, the apparent height of samples 1 and 5 are 19.3 nm (Figure 1n) and 6.9 nm
  • on the sample surface. The electrostatic attractive force superposes on the van der Waals force between the tip and sample so that the SPFM imaging gives a higher apparent height than the topographic height of nanomaterials when the dielectric constant of the nanomaterials is larger than the
PDF
Album
Full Research Paper
Published 11 Apr 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • mechanism suggests that only one molecule will adsorb on the catalyst surface and the second molecule will react with it directly from the gas phase (van der Waals force) to form a new product. Liu et al. [22] found that the Fe2O3 catalyst forms amide species (NH2−) in the presence of NH3 on the Lewis acid
PDF
Review
Published 27 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Interface conditions of roughness-induced superoleophilic and superoleophobic surfaces immersed in hexadecane and ethylene glycol

  • Yifan Li,
  • Yunlu Pan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2017, 8, 2504–2514, doi:10.3762/bjnano.8.250

Graphical Abstract
  • colloidal AFM tip. Then the probe was driven towards the surface immersed in liquid at a certain driving velocity. By analyzing the force exerted on the probe, which mainly includes hydrodynamic forces, electrostatic forces, van der Waals force and Stokes force, the boundary slip can be calculated [12][18
PDF
Album
Full Research Paper
Published 27 Nov 2017
Graphical Abstract
  • surface of the material, the total van der Waals force experienced by the tip depends on the geometry of that cavity, or more specifically, on the number of surface elements that are in close proximity to the tip surface [22]. This is why the maximum attractive force differs for the approach and retract
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

  • Elena Dellacasa,
  • Li Zhao,
  • Gesheng Yang,
  • Laura Pastorino and
  • Gleb B. Sukhorukov

Beilstein J. Nanotechnol. 2016, 7, 81–90, doi:10.3762/bjnano.7.10

Graphical Abstract
  • polymers attract each other with van der Waals force, creating a more complementary and rigid structure, which leads to a higher melting point. In order to know whether the PDLA/PLLA complex had been formed after the PLA microcapsules were obtained, DSC was used to measure the melting points of four
PDF
Album
Full Research Paper
Published 21 Jan 2016

Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

  • Annalisa Calò,
  • Oriol Vidal Robles,
  • Sergio Santos and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2015, 6, 809–819, doi:10.3762/bjnano.6.84

Graphical Abstract
  • tip and the surface water layers. The relationship between γ and H is H = 24πγ(a0)2. For this profile don = 3 nm and doff = 3.3 nm. 3) The third profile corresponds to a force curve displaying a plateau, such as the one shown in Figure 3c. In this case the van der Waals force in Equation 7 has been
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2015
Graphical Abstract
  • attractive (van der Waals) force differs during approach and retract (see blue arrows). In contrast, Figure 1c shows that when a conservative model (e.g., Hertzian) is combined with a dissipation coefficient, there is hysteresis but the location of the force minimum does not differ for the approach and
PDF
Album
Full Research Paper
Published 26 Sep 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • is van der Waals force. The polymer nanobeads can be embedded deeper or even completely incorporated into ZnO crystal, depending on how much the nanorod is regrown. Figure 4a shows the nanorod after a regrowth process of 8 h. Such a long regrowth process leads to an overgrowth thickness more than 120
  • substrate covered with nanorods, and then rinsed. This leads to the attachment of nanoparticles onto the nanorods surfaces by van der Waals force. The sample was dried at 50 °C, followed by a second growth of ZnO nanorods in the nutrient solution containing 20 mM Zn2+. The regrowth duration was 4–12 h, and
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • relative motion, can be often observed on dry, non-lubricated contacts [20][21][22][23][24]. The dimensions, in which this phenomenon occurs, can vary from macroscopic to atomic ones. The underlying physical effects range from the interlocking of surface asperities to van-der-Waals force [22][23][24][25
PDF
Album
Full Research Paper
Published 24 Jan 2014

Ni nanocrystals on HOPG(0001): A scanning tunnelling microscope study

  • Michael Marz,
  • Keisuke Sagisaka and
  • Daisuke Fujita

Beilstein J. Nanotechnol. 2013, 4, 406–417, doi:10.3762/bjnano.4.48

Graphical Abstract
  • attractive force between tip and cluster can be divided into three different contributions: Dielectrophoretic force, image force and van der Waals force [15][28]. where the electric field E = E(z) is a function of the tip particle distance z. Since our experiments were performed in UHV, and no water
  • distance-dependent van der Waals force (open red circles). This plot provides a graphical determination of the tip–sample distance at which, following our model, the pick-up occurs. The obtained tip–cluster distance is z = 0.30 nm. This value is in a reasonable range taking into account the applied
PDF
Album
Full Research Paper
Published 28 Jun 2013

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • used to track the probe over the surface at an elevated tip–sample distance. Thus, the short-range van der Waals force is kept constant, and any force change is caused by long-range interactions, including the magnetostatic interaction. To minimize the long-range electrostatic interaction we
PDF
Album
Letter
Published 29 Feb 2012

Studies towards synthesis, evolution and alignment characteristics of dense, millimeter long multiwalled carbon nanotube arrays

  • Pitamber Mahanandia,
  • Jörg J. Schneider,
  • Martin Engel,
  • Bernd Stühn,
  • Somanahalli V. Subramanyam and
  • Karuna Kar Nanda

Beilstein J. Nanotechnol. 2011, 2, 293–301, doi:10.3762/bjnano.2.34

Graphical Abstract
  • of CNTs. Once the initial CNT formation is established, CNT growth continues in the vertical direction and is further reinforced by the presence of nearby surrounding CNTs, which display multiple van der Waals force interactions and mechanically stabilize the large area growth in the vertical
PDF
Album
Full Research Paper
Published 14 Jun 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • exclusion principle. These repulsive forces balance and prevail the attractive forces at very short distances. The classification into these three groups is neither rigid nor exhaustive. For example, van der Waals force, which falls into category two, is a general consequence of the zero-point energy in
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities